Laparoscopic colectomy for serosa-positive colon cancer (pT4a) in patients with preoperative diagnosis of cancer without serosal invasion

Shenglong Guo1*, Detao Tang1*, Xiaojun Chen2, Ming Chen2, Yaqian Xiang3

1Department of General Surgery, Second People’s Hospital of Jingmen, Jingmen, Hubei 448000, People’s Republic of China; 2Department of Radiology, Second People’s Hospital of Jingmen, Jingmen, Hubei 448000, People’s Republic of China; 3Medical College, Jingchu University of Technology, Jingmen, Hubei 448000, People’s Republic of China.

*These authors contributed equally to this article and should be considered co-first authors.

Summary

Purpose: Although general surgeons normally perform laparoscopic colectomies in patients with colon cancer, the procedure is also indicated for serosa-negative tumors (≤ cT3). Serosal invasion (T4a) is regarded as a potential risk factor for peritoneal dissemination due to pneumoperitoneum effects and tumor manipulation during laparoscopic colectomy. We compared short- and long-term outcomes of patients who underwent laparoscopic and open colectomies for serosa-involving colon cancer (pT4a) and had a preoperative diagnosis of cancer without serosal invasion (≤cT3).

Methods: A total of 179 patients (102 patients treated with laparoscopic colectomies and 77 with open colectomies) who were treated between 2009 and 2015 were included. These patients were first diagnosed preoperatively with ≤ cT3 disease based on computed tomography, endoscopy, or endoscopic ultrasound, but they were diagnosed with pT4a disease based on final pathology results. Recurrence and survival rates between the two groups were compared.

Results: Baseline characteristics, clinical stage, type of colectomy, and short-term outcome did not differ between the groups. Five-year overall survival (OS) (p=0.248) and disease-free survival (DFS) rates (p=0.113) were comparable between the laparoscopic and open groups. Recurrence patterns did not differ between groups. Moreover, laparoscopic colectomy did not increase peritoneal recurrence compared to open colectomy. By multivariate analysis, surgical approach was not an independent prognostic factor for OS or DFS.

Conclusion: Similar survival and recurrence patterns were observed in patients with serosa-involving colon cancer (pT4a) who were preoperatively diagnosed with serosa negative disease (≤cT3) and underwent either laparoscopic or open colectomies. Laparoscopic colectomy may be safely performed in patients with serosa-positive tumors.

Key words: colectomy, colorectal cancer, laparoscopy, minimally invasive surgery, serosal invasion

Introduction

Laparoscopic colectomy has been accepted as an alternative treatment for selected patients with colon cancer based on long-term survival outcomes [1-5]. However, laparoscopic colectomy for cT4 colon cancer is not generally performed because of the risk of cancer cell dissemination resulting from laparoscopic tumor handling and pneumoperitoneum effects [6]. For this reason, laparoscopic colectomy performance is considered limited to ≤ cT3 disease [7]. However, to date, there has been no evidence regarding a higher incidence of peritoneal recurrence after laparoscopic colectomy for colon cancer compared to that which occurs after open colectomy. Although
Laparoscopic colectomy for pT4a colon cancer

a few cases of port site recurrence have been reported, these do not appear to be clinically significant when compared to observations in many published reports [1-5].

Inevitably, as the number of laparoscopic colectomies performed for colon cancer increases, the number of patients who are pathologically diagnosed with pT4a will also increase [1-5], although the indication for laparoscopic colectomy is limited to ≤ cT3 cancers diagnosed using preoperative staging assessments [1-5]. This is because of the relatively low accuracy of preoperative diagnosis and inaccurate intraoperative evaluation [8-13]. There has been no report that focuses on the prognosis of patients who undergo laparoscopic colectomies for pT4a disease and who were preoperatively diagnosed with less advanced disease (≤ cT3). In this study, we investigated the short- and long-term outcomes of patients with pT4a disease that were preoperatively diagnosed with ≤ cT3 disease. Differences between groups treated using either laparoscopic or open colectomies were compared. Recurrence patterns, including peritoneal metastasis, were also analyzed.

Methods

This study complied with the Declaration of Helsinki and was approved by our local ethics committee. The need for informed consent from patients was waived because of the retrospective nature of this study.

From January 2009 to January 2015, a total of 179 patients who were diagnosed with T4a colon cancer that was previously classified as cT3 or less during the preoperative staging assessment via endoscopy, endoscopic ultrasound, or abdominopelvic computed tomography (CT) scan [14-17] were included in the study. Patients who underwent preoperative staging assessments without endoscopic ultrasound or who showed evidence of cT4a or more advanced disease was suspicious for M1 disease were excluded from the study. Laparoscopic colectomy was indicated for patients no more advanced than cT3 disease based on preoperative evaluation. All patients included in the study underwent R0 resections. Colon cancer stage was classified according to the 7th edition of the TNM classification of colon cancer, which was proposed by the Union Internationale Contre le Cancer (UICC) and the American Joint Committee on Cancer (AJCC) [18-23].

Of the 179 patients in the study, 102 were treated using laparoscopic colectomies, while the other 77 underwent open colectomies to treat colon cancer. All patients provided adequate preoperative informed consent after being given a full, detailed explanation of each surgical approach, including cost, advantages, and disadvantages. All patients decided the surgical approach they would receive. Laparoscopic colectomy has been described elsewhere in detail [24]. Open colectomies were performed similarly to laparoscopic colectomies, and patient management and follow-up were performed similarly in both groups. Postoperative complications occurring within 30 postoperative days were classified using the Clavien-Dindo classification. Major complications were classified as grades 3, 4, and 5. Minor complications were classified as grades 1 and 2 [25-38]. Patients diagnosed with stage II and III colon cancer after R0 resection were indicated for adjuvant chemotherapy and treated with a 5-fluorouracil (5-FU) based regimen [39,40].

Patients were seen in the outpatient department every 3 months for the first postoperative year, every 4-5 months for the next 2 years, and annually thereafter. Tumor recurrence was diagnosed using history, physical examination, endoscopic evaluation, radiologic investigations, or pathology when available. The patterns of recurrence were defined as follows: peritoneal recurrence and peritoneal seeding or Krukenberg tumor; distant recurrence: recurrence in the liver, lung, bone, brain, or distant lymph nodes; locoregional recurrence: recurrence in the colon, anastomosis, or regional lymph nodes; and mixed recurrence: multiple-site recurrence at the time of recurrence diagnosis.

Baseline data as well as short- and long-term outcomes were analyzed using medical records from a prospectively maintained colon cancer database. Patients were followed from the date of surgery until March 31, 2016 or death. OS was defined as the time from colectomy to death due to any cause. DFS was defined as the time from colectomy to disease recurrence or death due to any cause. OS and DFS were censored on March 31, 2016 if a patient remained alive.

Statistics

All statistical analyses were performed using SPSS 14.0 software (SPSS Inc., Chicago, IL, USA). For variables following normal distributions, data were presented as means and standard deviations and were analyzed by Student’s t-test. For variables following non-normal distributions, data were expressed as medians and ranges and were compared by Mann-Whitney U test. Differences in semi-quantitative results were analyzed by Mann-Whitney U test. Differences in qualitative results were analyzed by chi-square test or Fisher’s exact test where appropriate. Survival rates were analyzed using the Kaplan-Meier method, and differences between the two groups were analyzed by the log-rank test. Univariate analyses were performed to identify prognostic variables related to OS and DFS. Univariate variables with p values <0.10 were selected for inclusion in the multivariate Cox regression model.
Results

Baseline data are shown in Table 1. Among the 179 patients in the study, 102 and 77 underwent laparoscopic and open surgery, respectively. There were no differences in median age, clinical stage, or tumor location between the two groups.

Short-term outcomes are shown in Table 2. Conversion to open surgery was necessary in two patients undergoing laparoscopic colectomy because of massive adhesions. The median surgical time for the laparoscopic group was 210 min, which was significantly higher than the median of 170 min for the open group (p=0.029). Neither postoperative complication rate nor the severity of complications differed between the two groups. There was no postoperative 30-day death in either study group. Among all patients, 69 in the laparoscopic group and 57 in the open group completed adjuvant chemotherapy, while the remainder refused adjuvant chemotherapy or did not receive a complete course. However, no difference was found in adjuvant chemotherapy completion between the two groups.

Pathologic outcomes are shown in Tables 3. There was no significant difference in pathologic outcomes between the two groups.

Table 1. Comparison of baseline characteristics between the two groups

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Laparoscopic group (n=102)</th>
<th>Open group (n=77)</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, years, median (range)</td>
<td>64 (45-71)</td>
<td>65 (41-74)</td>
<td>0.554</td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>47 (46.1)</td>
<td>35 (45.5)</td>
<td>0.934</td>
</tr>
<tr>
<td>Female</td>
<td>55 (53.9)</td>
<td>42 (54.5)</td>
<td></td>
</tr>
<tr>
<td>ASA score</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>82 (80.4)</td>
<td>63 (81.8)</td>
<td>0.818</td>
</tr>
<tr>
<td>II</td>
<td>16 (15.7)</td>
<td>11 (14.5)</td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>4 (3.9)</td>
<td>5 (3.9)</td>
<td></td>
</tr>
<tr>
<td>Clinical T stage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1</td>
<td>8 (7.8)</td>
<td>4 (5.2)</td>
<td>0.186</td>
</tr>
<tr>
<td>T2</td>
<td>25 (24.5)</td>
<td>14 (18.2)</td>
<td></td>
</tr>
<tr>
<td>T3</td>
<td>69 (67.6)</td>
<td>59 (76.6)</td>
<td></td>
</tr>
<tr>
<td>Clinical N stage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N0</td>
<td>69 (67.6)</td>
<td>54 (70.1)</td>
<td>0.715</td>
</tr>
<tr>
<td>N1</td>
<td>34 (33.3)</td>
<td>14 (18.2)</td>
<td></td>
</tr>
<tr>
<td>N2</td>
<td>4 (3.9)</td>
<td>9 (11.7)</td>
<td></td>
</tr>
<tr>
<td>Tumor location</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Descending colon</td>
<td>20 (19.6)</td>
<td>13 (16.9)</td>
<td>0.642</td>
</tr>
<tr>
<td>Transverse colon</td>
<td>6 (5.9)</td>
<td>9 (11.7)</td>
<td>0.165</td>
</tr>
<tr>
<td>Ascending colon</td>
<td>49 (48.0)</td>
<td>38 (49.4)</td>
<td>0.862</td>
</tr>
<tr>
<td>Sigmoid colon</td>
<td>27 (26.5)</td>
<td>17 (22.1)</td>
<td>0.499</td>
</tr>
</tbody>
</table>

Table 2. Comparison of short-term outcomes between the two groups

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>Laparoscopic group (n=102)</th>
<th>Open group (n=77)</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conversion</td>
<td>2 (2.0)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Type of resection</td>
<td></td>
<td></td>
<td>0.648</td>
</tr>
<tr>
<td>Right colectomy</td>
<td>21 (20.6)</td>
<td>18 (23.4)</td>
<td></td>
</tr>
<tr>
<td>Extended right hemicolectomy</td>
<td>2 (2.0)</td>
<td>3 (3.9)</td>
<td></td>
</tr>
<tr>
<td>Left colectomy</td>
<td>79 (77.5)</td>
<td>56 (72.7)</td>
<td></td>
</tr>
<tr>
<td>Surgical time (min), median (range)</td>
<td>210 (180-520)</td>
<td>170 (170-520)</td>
<td>0.029</td>
</tr>
<tr>
<td>Blood loss (ml), median (range)</td>
<td>140 (120-520)</td>
<td>210 (160-420)</td>
<td>0.018</td>
</tr>
<tr>
<td>Patients with postoperative 30-day complications</td>
<td>11 (10.8)</td>
<td>10 (10.0)</td>
<td>0.653</td>
</tr>
<tr>
<td>Anastomotic leakage</td>
<td>1 (1.0)</td>
<td>2 (2.6)</td>
<td>0.805</td>
</tr>
<tr>
<td>Intra-abdominal abscess</td>
<td>5 (2.9)</td>
<td>4 (5.2)</td>
<td>0.713</td>
</tr>
<tr>
<td>Atelectasis</td>
<td>4 (5.9)</td>
<td>3 (5.9)</td>
<td>1.000</td>
</tr>
<tr>
<td>Wound infection</td>
<td>1 (1.0)</td>
<td>2 (2.6)</td>
<td>0.805</td>
</tr>
<tr>
<td>Ileus</td>
<td>3 (2.9)</td>
<td>2 (2.6)</td>
<td>1.000</td>
</tr>
<tr>
<td>Severity of complications</td>
<td></td>
<td></td>
<td>0.756</td>
</tr>
<tr>
<td>Major</td>
<td>2 (2.0)</td>
<td>1 (1.5)</td>
<td></td>
</tr>
<tr>
<td>Minor</td>
<td>9 (8.8)</td>
<td>9 (11.7)</td>
<td></td>
</tr>
<tr>
<td>Postoperative 30-day mortality</td>
<td>0 (0.0)</td>
<td>0 (0.0)</td>
<td>-</td>
</tr>
<tr>
<td>Adjuvant chemotherapy</td>
<td></td>
<td></td>
<td>0.273</td>
</tr>
<tr>
<td>Not received</td>
<td>10 (9.8)</td>
<td>3 (3.9)</td>
<td></td>
</tr>
<tr>
<td>Incomplete</td>
<td>25 (22.5)</td>
<td>17 (22.1)</td>
<td></td>
</tr>
<tr>
<td>Completed</td>
<td>69 (67.6)</td>
<td>57 (74.0)</td>
<td></td>
</tr>
</tbody>
</table>
During the median follow-up period of 38 months, 37 patients in the laparoscopic group and 33 in the open group experienced tumor recurrence. The difference in recurrence rate was not statistically significant between groups (p=0.147). Death from cancer recurrence was noted in 35 of 37 patients who underwent laparoscopic surgery and in 31 of 33 who underwent open surgery. There was no port site recurrence among patients who underwent laparoscopic surgery. The location of recurrence and time to first recurrence were not significantly different between the two groups (Table 4).

When OS and DFS were compared, no difference was found between the two groups. The 5-year OS rate was 58% in the laparoscopic group and 49% in the open group (p=0.248, Figure 1), and the DFS rates for these groups were 54% and 46%, respectively (p=0.113, Figure 2).

For all patients analyzed, the significant risk factors for poor OS were an undifferentiated tumor, no adjuvant chemotherapy, and higher pathologic N stage (Table 5). These three features were also significant risk factors for poor DFS. However, laparoscopic colectomy was not a risk factor for OS or DFS (Table 6).
Laparoscopic colectomy for pT4a colon cancer

Discussion

In this study, OS and DFS were not related to the surgical approach used to treat the preoperatively underdiagnosed serosa-positive (pT4a) colon cancer. While surgical approach was not a prognostic factor, histologic type, adjuvant chemotherapy use, and pathologic N classification were prognostic factors for OS and DFS by multivariate analysis. In addition, the pattern of recurrence and the peritoneal recurrence rate after laparoscopic colectomy did not differ based on colectomy type.

Laparoscopic colectomy is an alternative treatment for colon cancer [1-5]. Prior evidence indicates similar long-term outcomes but better short-term outcomes for patients who undergo laparoscopic colectomies compared to those that undergo open colectomies [1-5]. However, laparoscopic colectomies are still only indicated to treat cT1-3 colon cancer because of the possibility of cancer cell dissemination to the peritoneal cavity and port sites [1-5]. Although many surgeons do not advocate performing laparoscopic colectomies for patients with T4 colon cancer, they often encounter some patients who were diagnosed with pT4 colon cancer after performing a laparoscopic colectomy because of inaccurate preoperative and intraoperative diagnoses [1-5]. Underdiagnosed patients like those in this study are regarded similarly to those who undergo open surgery. In this study, we found that laparoscopic colectomy was not a risk factor for poor prognosis and did not compromise long-term outcomes for patients who were originally underdiagnosed.

Recurrence rates in this study were 36.3% for the laparoscopic group and 42.9% for the open group, which are comparable to results obtained in previous studies. The 5-year OS and DFS rates for both groups were also similar to those previously reported [1-5]. Laparoscopic surgery did not relate to poorer OS or DFS, as seen in other studies [1-5]. According to our findings, the prognosis of patients who undergo open surgery seems to be worse than those who undergo laparoscopic colectomies, although the differences were not statistically significant. This is possibly because more aggressive cancers were included in the open surgery group, even after strict selection of patients to adjust for selection bias. Patient characteristics for each group were statistically comparable. However, there was more clinical subserosal and nodal involvement in patients with colon cancer included in the open group. Regarding recurrence patterns, our results show that selected T4a cancers treated using laparoscopic colectomy recur in similar patterns to cancers treated using open surgery, and laparoscopic colectomy performance did not increase peritoneal seeding or port site metastasis. This result was similar to those obtained in previous studies [1-5], which showed that using laparoscopic colectomy to treat colon cancer does not increase local, peritoneal, or port site recurrence.

Our study has some limitations. First, it was conducted on patients from a single institution, and it was performed retrospectively. Second, our study shows that only a limited number of patients with serosa-negative colon cancer according to preoperative and intraoperative diagnosis would be candidate for laparoscopic colectomy, although efforts should still be made to minimize direct handling of the tumor. Finally, our study enrolled a small number of patients. Thus, we may not have observed differences in survival due to the sample size. Therefore, a randomized clin-
Laparoscopic colectomy for pT4a colon cancer

In conclusion, preoperatively underdiagnosed T4a colon cancer may be treated using laparoscopic colectomy without compromising long-term prognosis. This study provides baseline evidence for future randomized studies of laparoscopic colectomy to treat T4 colon cancer.

Acknowledgements

We sincerely thank the colleagues who participated in this research.

Conflict of interests

The authors declare no conflict of interests.

References

21. Demir S, Turan I, Aliyazicioglu Y. Selective cytotoxic effect of Rhododendron luteum extract on human...
22. Li QC, Liang Y, Tian Y, Hu GR. Artigentin induc-
es apoptosis in colon cancer cells through ROS/
23. Lin BQ, Wang RL, Li QX, Chen W, Huang ZY. Investi-
gation of treatment methods in obstructive colorectal
cancer. JBUON 2015;20:756-761.
24. Zhao LY, Chi P et al. Laparoscopic vs open extended
right hemicolecction for colon cancer. World J Gastro-
enterol 2014;20:7926-7932.
25. Clavien PA, Barkun J, de Oliveira ML et al. The Cla-
vrier-Dindo classification of surgical complications:
26. Guo C, Zhang Z, Ren B, Men X. Comparison of the
long-term outcomes of patients who underwent lapa-
roscopic versus open surgery for rectal cancer. JBUON
2015;20:1440-1446.
27. Xiao H, Xie P, Zhou K et al. Clavien-Dindo classifica-
tion and risk factors of gastrectomy-related complica-
2015;8:8262-8268.
surgical oncologic emergencies. Asian Pac J Surg On-
30. Zhu Y, Chen W. Very long-term outcomes of minimal-
ly invasive esophagectomy for esophageal squamous
31. Hou Z, Zhang H, Gui L, Wang W, Zhao S. Video-as-
isted thoracoscopic surgery versus open resection of
lung metastases from colorectal cancer. Int J Clin Exp
Med 2015;8:15371-15377.
32. Liu K, Zhao J, Zhang W, Tan J, Ma J, Pei Y. Video-assist-
ed thoracoscopic surgery for non-small-cell lung can-
cer in elderly patients: a single-center, case-matched
33. Wang Y. Video-assisted thoracoscopic surgery for
non-small-cell lung cancer is beneficial to elderly pa-
34. Yuan J, Dai G, Kong F. Long-term outcomes of video-
assisted thoracoscopic versus open lobectomy for non-small-cell lung cancer with propensity score
35. Yu J, Yang R, Wang J, Shao F. Equivalency of onco-
logical outcomes during lobectomy by video-assisted
thoracoscopic surgery versus thoracotomy. Int J Clin
36. Kararyan AM, Marangos IP, Rosok BI et al. Laparo-
scopic resection of colorectal liver metastases: sur-
gical and long-term oncologic outcome. Ann Surg
2010;252:1005-1012.
37. Chen X, Yang J, Peng J, Jiang H. Case-matched analysis
of combined thoracoscopic-laparoscopic versus open
esophagectomy for esophageal squamous cell carci-
38. Wang W, Zhou Y, Feng J, Mei Y. Oncological and sur-
gical outcomes of minimally invasive versus open
esophagectomy for esophageal squamous cell carci-
39. Lee P, Yeung AW, Hong SE, Brose MS, Michels DL.
Principles of medical oncology. Asian Pac J Surg On-
40. Nio K, Higashi D, Kumagai H et al. Efficacy and safety
analysis of chemotherapy for advanced colitis-assos-
iated colorectal cancer in Japan. Anticancer Drugs